Δ9-Tetrahydrocannabinol Experience Influences ΔFosB and Downstream Gene Expression in Prefrontal Cortex
نویسندگان
چکیده
Introduction: Repeated administration of abused drugs, including Δ9-tetrahydrocannabinol (THC), induces the stable transcription factor ΔFosB in dopaminergic terminal field regions of the mesolimbic system. These studies investigated the effect of prior repeated THC treatment on THC-induced ΔFosB expression and regulation of downstream targets in the forebrain. Methods: Mice received THC (10 mg/kg) or vehicle twice daily for 13 days, and then half of each group received a single injection of THC or vehicle 45 min before brain collection. ΔFosB messenger RNA (mRNA) and protein were measured by polymerase chain reaction and immunoblotting, respectively. Potential downstream targets of ΔFosB induction were measured by immunoblot. Results: THC injection in mice with a history of repeated THC treatment enhanced ΔFosB expression as compared with vehicle in the prefrontal cortex (PFC), nucleus accumbens (NAc), and amygdala. This change occurred concomitantly with an increase in ΔFosB mRNA in the PFC and NAc. THC injection in mice with a history of repeated THC treatment increased expression of cyclin-dependent kinase 5 (Cdk5) and its regulatory protein p35 only in the PFC. This increase in Cdk5 and p35 expression in PFC was also found in mice that had only received repeated THC administration, suggesting that this effect might be due to induction of ΔFosB. Extracellular signal-regulated kinase (ERK) phosphorylation was increased in PFC after THC injection in repeated THC-treated mice. Phosphorylation of glycogen synthase kinase-3β (GSK3β), a Cdk5 target, was reduced in PFC after repeated THC treatment regardless of THC history, and phosphorylation of dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) at the Cdk5-regulated threonine 75 site was unchanged. Conclusion: These results suggest that a history of repeated THC administration primes THC-mediated induction of ΔFosB in the NAc and PFC, and that expression of both downstream targets of ΔFosB (e.g., Cdk5 and p35) and upstream activators (e.g., pERK) in the PFC is dependent on THC history, which might have functional implications in addiction and neuropsychiatric disease.
منابع مشابه
Role of Dopamine Type 1 Receptors and Dopamine- and cAMP-Regulated Phosphoprotein Mr 32 kDa in Δ9-Tetrahydrocannabinol-Mediated Induction of ΔFosB in the Mouse Forebrain.
Δ(9)-Tetrahydrocannabinol (THC), the main psychoactive component of marijuana, produces motor and motivational effects via interactions with the dopaminergic system in the caudate-putamen and nucleus accumbens. However, the molecular events that underlie these interactions after THC treatment are not well understood. Our study shows that pretreatment with dopamine D1 receptor (D1R) antagonists ...
متن کاملChronic Stress Is Associated with Pain Precipitation and Elevation in DeltaFosb Expression
A number of acute or repeated stimuli can induce expression of DeltaFosB (ΔFosB), a transcription factor derived from the fosB gene (an osteosarcoma viral oncogene) via alternative splicing. ΔFosB protein is currently viewed as a 'molecular switch' to repeated stimuli that gradually converts acute responses into relatively stable adaptations underlying long-term neural and behavioral plasticity...
متن کاملΔ9-Tetrahydrocannabinol Prevents Methamphetamine-Induced Neurotoxicity
Methamphetamine (METH) is a potent psychostimulant with neurotoxic properties. Heavy use increases the activation of neuronal nitric oxide synthase (nNOS), production of peroxynitrites, microglia stimulation, and induces hyperthermia and anorectic effects. Most METH recreational users also consume cannabis. Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC) and synthe...
متن کاملMorphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex
Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels i...
متن کاملEvaluation of Δ9-tetrahydrocannabinol metabolites and oxidative stress in type 2 diabetic rats
Objective(s): The object of the study is to examine the effects of Δ9-tetrahydrocannabinol (THC) against oxidative stress in the blood and excretion of THC metabolites in urine of type 2 diabetic rats. Materials and Methods: The control (n=8), THC control (n=6), diabetes (n=8) and diabetes + THC (n=7) groups were created. Type 2 diabetes was induced by nicotinamide (NA, 85 mg/kg) + streptozotoc...
متن کامل